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Main finding: 
This study found no clear relationship between performance metrics, model architecture, or overall performance, suggesting that the best protocol may be 

species or study specific.  However, AutoML provides an accessible and efficient way to compare a variety of models.  

INTRODUCTION: 
Species distribution models (SDMs) are widely used to gain 
ecological understanding and guide conservation decisions. 
SDMs have been developed with a wide variety of machine 
learning algorithms, which have improved considerably with the 
standardization of modelling workflows and thorough inter-
model comparisons of predictive accuracy being performed (e.g., 
Valavi et al., 2022).  However, one property current models have 
in common is the use of predictors that strongly simplify the 
temporal variability of driving factors.  This is despite most 
factors driving species distributions (e.g., climate, land-use) 
being temporally dynamic.  Thus, recent studies ( Capinha et al, 
2021; Smith et al. 2022) have turned to deep learning to process 
raw, ordered temporal data to assess environmental patterns 
and to effectively predict suitable habitat conditions.  Unlike for 
conventional methods, no such analysis has been done to 
determine the best working protocols for time series-based deep 
learning SDMs.  This study aims to determine a consistent 
workflow for such cases and evaluated models on the following 
parameters: average epoch computation time; number of 
training iterations (i.e., epochs); architecture-type; and 
performance statistics.

METHODS:
Species records included 14 bird species from Ontario, Canada,  
compiled by the the National Center for Ecological Analysis and 
Synthesis (NCEAS; Elith et al., 2020).  Climate and elevation data 
were extracted from Worldcim (Fick & Hijmans, 2017).  Models 
were generated using the automated machine learning (AutoML; 
He et al., 2021) assemblage Python package McFly (Van 
Kuppevelt et al., 2020).  Ten candidates for each available 
architecture (Table 1)  were trained for five epochs.  Four 
performance metrics (Table 1) were used to evaluate model 
performance.  A series of tests based on architecture-
performance metric combinations were performed to select best 
candidate models (Figure 1).  The final model for each species 
was chosen based on the cumulative performance metric (ACC + 
ROC + PR) on an independent  presence-absence data set

Data collection and modeling workflow
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Figure 1:  Workflow of modeling process. A) Region where species records 
occur.  B) Example of environmental data collected for a species record.  C) 
Conceptual framework for model construction and  analyzing various 
protocols. 

Architectures Performance metrics Systematic metrics
• Convolutional Neural 

Network (CNN)

• Inception Time

• Long Short-Term Memory 
(LSTM)

• Residual Network (ResNet) 

• Minimized cost of loss function 
(Loss)

• Classification accuracy (ACC)

• Area under the receiver 
operating curve (ROC)

• Area under the precision-recall 
curve (PR)

• Computation time 

• Number of training/tuning 
iterations (Epochs)

RESULTS:

Figure 2: Summary of cumulative  prediction metrics (ACC + ROC + PR) for all 
best models, organized by architecture-metric combinations. Each bar 
represents the average score for models optimized by the given metric.  Note, a 
score of 3 indicates perfect prediction across each prediction metrics.  CNN 
models more frequently produce higher scores across all metrics. All 
architectures performed best when focusing on Loss values, followed by ACC.  
All models had polarizing results when optimized on ROC or PR.

Figure 3: Summary of modeling computation time for each type of architecture.  A) The 
average number of epochs performed before early stopping was activated. Mean value 
across all models was  ~ 9 epochs. Inception time and Resnet models were quicker to 
converge  while both CNN and LSTM needed extensive number of additional tuning 
iterations.  B) Average length of time for each epoch to complete.    CNN models were 
the quickest followed by Inception time. LSTM models were least efficient, followed by 
ResNet models.

Table 2:  Summary of best models for each species

Table 1: List  of model components evaluated in this study 

Figure 4: Results from final models showing the relationship between three 
prediction statistics.  Each point is  is defined by the modeling metric that was 
used to tune the model.  Results indicate a positive  correlation between all three 
metrics . Models focusing on the Loss value more frequently scored best across all 
three metrics.  

Figure 3: Results from final models showing the relationship between three 
prediction statistics.  Each point is  is defined by the model architecture.  Results 
indicate a positive  correlation between all three metrics .  A best architecture 
could not be defined as  varying  results . 


